65 research outputs found

    STED imaging performance estimation by means of Fourier transform analysis

    Get PDF
    Due to relatively high powers used in STED, biological samples may be affected by the illumination in the process of image acquisition. Similarly, the performance of the system may be limited by the sample itself. Optimization of the STED parameters taking into account the sample itself is therefore a complex task as there is no clear methodology that can determine the image improvement in an objective and quantitative manner. In this work, a method based on Fourier transform formalism is presented to analyze the performance of a STED system. The spatial frequency distribution of pairs of confocal and STED images are compared to obtain an objective parameter, the Azimuth Averaged Spectral Content Spread (AASCS), that is related to the performance of the system in which the sample is also considered. The method has been first tested on samples of beads, and then applied to cell samples labeled with multiple fluorescent dyes. The results show that a single parameter, the AASCS, can be used to determine the optimal settings for STED image acquisition in an objective way, only by using the information provided by the images from the sample themselves. The AASCS also helps minimize the depletion power, for better preservation of the samples.Peer ReviewedPostprint (published version

    Modular multimodal platform for classical and high throughput light sheet microscopy

    Get PDF
    Light-sheet fluorescence microscopy (LSFM) has become an important tool for biological and biomedical research. Although several illumination and detection strategies have been developed, the sample mounting still represents a cumbersome procedure as this is highly dependent on the type of sample and often this might be time consuming. This prevents the use of LSFM in other promising applications in which a fast and straightforward sample-mounting procedure and imaging are essential. These include the high-throughput research fields, e.g. in drug screenings and toxicology studies. Here we present a new imaging paradigm for LSFM, which exploits modularity to offer multimodal imaging and straightforward sample mounting strategy, enhancing the flexibility and throughput of the system. We describe its implementation in which the sample can be imaged either as in any classical configuration, as it flows through the light-sheet using a fluidic approach, or a combination of both. We also evaluate its ability to image a variety of samples, from zebrafish embryos and larvae to 3D complex cell cultures.The authors acknowledge financial support from the Spanish Ministerio de Economía y Competitividad (MINECO) through the “Severo Ochoa” program for Centres of Excellence in R&D (CEX2019-000910-S [MCIN/ AEI/10.13039/501100011033]), Fundació Privada Cellex, Fundació Mir-Puig, and Generalitat de Catalunya through CERCA program; MINECO/FEDER Ramón y Cajal program (RYC-2015-17935); Laserlab- Europe EU-H2020 GA no. 871124; European Union’s Horizon 2020 Framework Programme (H2020 Marie Skłodowska-Curie Innovative Training Networks ImageInLife N. 721537). We thank Verena Ruprecht (CRG- Center of Genomic Regulation, Barcelona), Paz Herráez (Universidad de León), Ester Antón-Galindo and Noelia Fernández-Castillo (Universitat de Barcelona), Marymar Becerra (Universidad Nacional Autónoma de México), Georges Lutfalla, Mai Nguyen Chi and Tamara Sipka (Université de Montpellier), Catarina Brito (ITQB/IBEQ, Lisbon), Antonia Weberling and Magdalena Zernicka-Goetz (University of Cambridge), and Corinne Lorenzo (ITAV – CNRS, Toulouse) for the samples provided. We also thank Maria Marsal and Jordi Andilla for many fruitful discussions.Postprint (published version

    Sub-diffraction discrimination with polarization-resolved two-photon excited fluorescence microscopy

    Get PDF
    Imaging molecular structures separated by distances of a few nanometers still represents a complex challenge. Moreover, it is normally restricted to observations on thin (few micrometers) samples. In this work, we rotate the polarization of the excitation beam of two-photon excited fluorescence (TPEF) images to show that fluorescent structures at the molecular scale can be discriminated in a living organism. The polarization rotation generates a modulation of the signal intensity in each pixel of the TPEF images that carry information related to the fluorophore orientation. We analyze the signal modulation in every pixel of the polarization-resolved (PR) TPEF images through a Fourier analysis and generate images for the different Fourier components. Doing that, we show that two fluorophores oriented in different directions can be distinguished. Although by imaging the Fourier components the resolution of the optical system restricts the exact localization of two close molecules, discrimination is still possible even when the molecules are located at sub-diffraction distances. We propose a model that predicts this behavior, and demonstrate it experimentally in the neurons of a living Caenorhabditis elegans nematode, where we distinguish the walls of an axon with a diameter below the objective resolution. Since the technique is based in TPEF, the method can be extended to deep tissue imaging and has potential applications in single molecule detection, biological sensors, or super-resolution imaging techniques.Peer ReviewedPostprint (published version

    Light-sheet fluorescence microscopy for the in vivo study of microtubule dynamics in the zebrafish embryo

    Get PDF
    During its first hours of development, the zebrafish embryo presents a large microtubule array in the yolk region, essential for its development. Despite of its size and dynamic behavior, this network has been studied only in limited field of views or in fixed samples. We designed and implemented different strategies in Light Sheet Fluorescence microscopy for imaging the entire yolk microtubule (MT) network in vivo. These have allowed us to develop a novel image analysis from which we clearly observe a cyclical re-arrangement of the entire MT network in synchrony with blastoderm mitotic waves. These dynamics also affect a previously unreported microtubule array deep within the yolk, here described. These findings provide a new vision of the zebrafish yolk microtubules arrangement, and offers novel insights in the interaction between mitotic events and microtubules reorganization.Horizon 2020 Framework Programme (Marie Sklodowska-Curie 721537); Laserlab-Europe (871124); Ministerio de Economía y Competitividad (RYC-2015-17935); Generalitat de Catalunya (CERCA Program); Fundación Cellex (Fundación Mir-Puig); Ministerio de Economía y Competitividad (CEX2019-000910-S).Peer ReviewedPostprint (published version

    High-Resolution morphological approach to analyse elastic laminae injuries of the ascending aorta in a murine model of Marfan Syndrome

    Get PDF
    In Marfan syndrome, the tunica media is disrupted, which leads to the formation of ascending aortic aneurysms. Marfan aortic samples are histologically characterized by the fragmentation of elastic laminae. However, conventional histological techniques using transverse sections provide limited information about the precise location, progression and 3D extension of the microstructural changes that occur in each lamina. We implemented a method using multiphoton excitation fluorescence microscopy and computational image processing, which provides high-resolution en-face images of segmented individual laminae from unstained whole aortic samples. We showed that internal elastic laminae and successive 2(nd) laminae are injured to a different extent in murine Marfan aortae; in particular, the density and size of fenestrae changed. Moreover, microstructural injuries were concentrated in the aortic proximal and convex anatomical regions. Other parameters such as the waviness and thickness of each lamina remained unaltered. In conclusion, the method reported here is a useful, unique tool for en-face laminae microstructure assessment that can obtain quantitative three-dimensional information about vascular tissue. The application of this method to murine Marfan aortae clearly shows that the microstructural damage in elastic laminae is not equal throughout the thickness of the tunica media and in the different anatomical regions of the ascending aorta

    Analysis of intracellular protein dynamics in living zebrafish embryos using light-sheet fluorescence single-molecule microscopy

    Get PDF
    Single-molecule microscopy techniques have emerged as useful tools to image individual molecules and analyze their dynamics inside cells, but their application has mostly been restricted to cell cultures. Here, a light-sheet fluorescence microscopy setup is presented for imaging individual proteins inside living zebrafish embryos. The optical configuration makes this design accessible to many laboratories and a dedicated sample-mounting system ensures sample viability and mounting flexibility. Using this setup, we have analyzed the dynamics of individual glucocorticoid receptors, which demonstrates that this approach creates multiple possibilities for the analysis of intracellular protein dynamics in intact living organisms.Ministerio de Economía y Competitividad (RYC-2015-17935, CEX2019-000910-S); Fundación Cellex (Mir-Puig); Laserlab-Europe (871124); Generalitat de Catalunya (CERCA); Fundación Cellex; Horizon 2020 Framework Programme (721537).Peer ReviewedPostprint (published version

    LINEAR UNMIXING PROTOCOL FOR HYPERSPECTRAL IMAGE FUSION ANALYSIS APPLIED TO A CASE STUDY OF VEGETAL TISSUES

    Get PDF
    Hyperspectral imaging (HSI) is a useful non-invasive technique that offers spatial and chemical information of samples. Often, different HSI techniques are used to obtain complementary information from the sample by combining different image modalities (Image Fusion). However, issues related to the different spatial resolution, sample orientation or area scanned among platforms need to be properly addressed. Unmixing methods are helpful to analyze and interpret the information of HSI related to each of the components contributing to the signal. Among those, Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) offers very suitable features for image fusion, since it can easily cope with multiset structures formed by blocks of images coming from different samples and platforms and allows the use of optional and diverse constraints to adapt to the specific features of each HSI employed. In this work, a case study based on the investigation of cross-sections from rice leaves by Raman, synchrotron infrared and fluorescence imaging techniques is presented. HSI of these three different techniques are fused for the first time in a single data structure and analyzed by MCR-ALS. This example is challenging in nature and is particularly suitable to describe clearly the necessary steps required to perform unmixing in an image fusion context. Although this protocol is presented and applied to a study of vegetal tissues, it can be generally used in many other samples and combinations of imaging platforms

    Large-area biomolecule nanopatterns on diblock copolymer surfaces for cell adhesion studies

    Get PDF
    Cell membrane receptors bind to extracellular ligands, triggering intracellular signal transduction pathways that result in specific cell function. Some receptors require to be associated forming clusters for effective signaling. Increasing evidences suggest that receptor clustering is subjected to spatially controlled ligand distribution at the nanoscale. Herein we present a method to produce in an easy, straightforward process, nanopatterns of biomolecular ligands to study ligand–receptor processes involving multivalent interactions. We based our platform in self-assembled diblock copolymers composed of poly(styrene) (PS) and poly(methyl methacrylate) (PMMA) that form PMMA nanodomains in a closed-packed hexagonal arrangement. Upon PMMA selective functionalization, biomolecular nanopatterns over large areas are produced. Nanopattern size and spacing can be controlled by the composition of the block-copolymer selected. Nanopatterns of cell adhesive peptides of different size and spacing were produced, and their impact in integrin receptor clustering and the formation of cell focal adhesions was studied. Cells on ligand nanopatterns showed an increased number of focal contacts, which were, in turn, more matured than those found in cells cultured on randomly presenting ligands. These findings suggest that our methodology is a suitable, versatile tool to study and control receptor clustering signaling and downstream cell behavior through a surface-based ligand patterning technique

    Autofluorescence of stingray skeletal cartilage: hyperspectral imaging as a tool for histological characterization

    Get PDF
    Tessellated cartilage is a distinctive composite tissue forming the bulk of the skeleton of cartilaginous fishes (e.g. sharks and rays), built from unmineralized cartilage covered at the surface by a thin layer of mineralized tiles called tesserae. The finescale structure and composition of elasmobranch tessellated cartilage has largely been investigated with electron microscopy, micro-computed tomography and histology, but many aspects of tissue structure and composition remain uncharacterized. In our study, we demonstrate that the tessellated cartilage of a stingray exhibits a strong and diverse autofluorescence, a native property of the tissue which can be harnessed as an effective label-free imaging technique. The autofluorescence signal was excited using a broad range of wavelengths in confocal and light sheet microscopy, comparing several sample preparations (fresh; demineralized and paraffin-embedded; non-demineralized and plastic-embedded) and imaging the tissue at different scales. Autofluorescence varied with sample preparation with the signal in both plastic- and paraffin-embedded samples strong enough to allow visualization of finescale (=¿1 µm) cellular and matrix structures, such as cell nuclei and current and former mineralization fronts, identifiable by globular mineralized tissue. A defined pericellular matrix (PCM) surrounding chondrocytes was also discernible, described here for the first time in elasmobranchs. The presence of a PCM suggests similarities with mammalian cartilage regarding how chondrocytes interact with their environment, the PCM in mammals acting as a transducer for biomechanical and biochemical signals. A posterior analysis of hyperspectral images by an MCR-ALS unmixing algorithm allowed identification of several distinct fluorescence signatures associated to specific regions in the tissue. Some fluorescence signatures identified could be correlated with collagen type II, the most abundant structural molecule of cartilage. Other fluorescence signatures, however, remained unidentified, spotlighting tissue regions that deserve deeper characterization and suggesting the presence of molecules still unidentified in elasmobranch skeletal cartilage. Our results show that autofluorescence can be a powerful exploratory imaging tool for characterizing less-studied skeletal tissues, such as tessellated cartilage. The images obtained are largely comparable with more commonly used techniques, but without the need for complicated sample preparations or external staining reagents standard in histology and electron microscopy (TEM, SEM).Postprint (published version

    GCAP neuronal calcium sensor proteins mediate photoreceptor cell death in the rd3 mouse model of LCA12 congenital blindness by involving endoplasmic reticulum stress

    Get PDF
    Loss-of-function mutations in the retinal degeneration 3 (RD3) gene cause inherited retinopathy with impaired rod and cone function and fast retinal degeneration in patients and in the natural strain of rd3 mice. The underlying physiopathology mechanisms are not well understood. We previously proposed that guanylate cyclase-activating proteins (GCAPs) might be key Ca2+-sensors mediating the physiopathology of this disorder, based on the demonstrated toxicity of GCAP2 when blocked in its Ca2+-free form at photoreceptor inner segments. We here show that the retinal degeneration in rd3 mice is substantially delayed by GCAPs ablation. While the number of retinal photoreceptor cells is halved in 6 weeks in rd3 mice, it takes 8 months to halve in rd3/rd3 GCAPs−/− mice. Although this substantial morphological rescue does not correlate with recovery of visual function due to very diminished guanylate cyclase activity in rd3 mice, it is very informative of the mechanisms underlying photoreceptor cell death. By showing that GCAP2 is mostly in its Ca2+-free-phosphorylated state in rd3 mice, we infer that the [Ca2+]i at rod inner segments is permanently low. GCAPs are therefore retained at the inner segment in their Ca2+-free, guanylate cyclase activator state. We show that in this conformational state GCAPs induce endoplasmic reticulum (ER) stress, mitochondrial swelling, and cell death. ER stress and mitochondrial swelling are early hallmarks of rd3 retinas preceding photoreceptor cell death, that are substantially rescued by GCAPs ablation. By revealing the involvement of GCAPs-induced ER stress in the physiopathology of Leber's congenital amaurosis 12 (LCA12), this work will aid to guide novel therapies to preserve retinal integrity in LCA12 patients to expand the window for gene therapy intervention to restore vision
    corecore